Antibody-unfolding and metastable-state binding in force spectroscopy and recognition imaging.
نویسندگان
چکیده
Force spectroscopy and recognition imaging are important techniques for characterizing and mapping molecular interactions. In both cases, an antibody is pulled away from its target in times that are much less than the normal residence time of the antibody on its target. The distribution of pulling lengths in force spectroscopy shows the development of additional peaks at high loading rates, indicating that part of the antibody frequently unfolds. This propensity to unfold is reversible, indicating that exposure to high loading rates induces a structural transition to a metastable state. Weakened interactions of the antibody in this metastable state could account for reduced specificity in recognition imaging where the loading rates are always high. The much weaker interaction between the partially unfolded antibody and target, while still specific (as shown by control experiments), results in unbinding on millisecond timescales, giving rise to rapid switching noise in the recognition images. At the lower loading rates used in force spectroscopy, we still find discrepancies between the binding kinetics determined by force spectroscopy and those determined by surface plasmon resonance-possibly a consequence of the short tethers used in recognition imaging. Recognition imaging is nonetheless a powerful tool for interpreting complex atomic force microscopy images, so long as specificity is calibrated in situ, and not inferred from equilibrium binding kinetics.
منابع مشابه
Following aptamer-ricin specific binding by single molecule recognition and force spectroscopy measurements.
Single molecule recognition imaging and dynamic force spectroscopy (DFS) analysis showed strong binding affinity between an aptamer and ricin, which was comparable with antibody-ricin interaction. Molecular simulation showed a ricin binding conformation with aptamers and gave different ricin conformations immobilizing on substrates that were consistent with AFM images.
متن کاملSequential unfolding of individual helices of bacterioopsin observed in molecular dynamics simulations of extraction from the purple membrane.
Multiple molecular dynamics simulations of bacterioopsin pulling from its C-terminus show that its alpha-helices unfold individually. In the first metastable state observed in the simulations, helix G is unfolded at its C-terminal segment while the rest of helix G (residues 200-216) is folded and opposes resistance because of a salt-bridge network consisting of Asp-212 and Lys-216 on helix G an...
متن کاملExploring the energy landscape of GFP by single-molecule mechanical experiments.
We use single-molecule force spectroscopy to drive single GFP molecules from the native state through their complex energy landscape into the completely unfolded state. Unlike many smaller proteins, mechanical GFP unfolding proceeds by means of two subsequent intermediate states. The transition from the native state to the first intermediate state occurs near thermal equilibrium at approximatel...
متن کاملSingle-domain antibody fragments with high conformational stability.
A variety of techniques, including high-pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single-domain antigen binders derived from camelid heavy-chain antibodies with specificities for lysozymes, beta-lactamases, and a dye...
متن کاملSimulated Force Quench Dynamics Shows GB1 Protein Is Not a Two State Folder.
Single molecule force spectroscopy is a useful technique for investigating mechanically induced protein unfolding and refolding under reduced forces by monitoring the end-to-end distance of the protein. The data is often interpreted via a "two-state" model based on the assumption that the end-to-end distance alone is a good reaction coordinate and the thermodynamic behavior is then ascribed to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 100 1 شماره
صفحات -
تاریخ انتشار 2011